
Design Patterns in KDE
Marc Mutz

Bielefeld University

Design Patterns in KDE – p.1/22

Overview

What Design Patterns are

What they are not

Why would I want to use one?

Case Study: The KDE DOM implementation.

Other Examples of Design Pattern use in KDE and
Qt

Examples of Patterns not yet used in KDE and Qt

Design Patterns in KDE – p.2/22

What Design Patterns are

Design Patterns are

A higher-level language than the programming
language to talk about software systems in,

A set of general solutions to common problems in
software engineering,

Definition of Gamma et al: “Design Patterns are descriptions of
communicating objects and classes that are customized to solve a
general design problem in a particular context.”

E.g., in C, Inheritance might be a Design Pattern,
whereas in C++, it’s built into the language.

Design Patterns in KDE – p.3/22

What Design Patterns are not

Design Patterns are not

Algorithms such as QuickSort or Boyer-Moore.

Language features, such as polymorphism or
exceptions.

Implementation patterns, such as the d-pointer or
the virtual_hook.

Software components such as toolkits and
frameworks

Design Patterns in KDE – p.4/22

Why would I want to use one?

Short answer: Because it makes you a better programmer.

Long answer: On learning Design Patterns, you will find that you

have known and implemented at least some of the patterns already.

You may have copied code or ideas, or you might have solved the

problem yourself.

What you more often than not have not done is think of the solution

as a pattern to re-apply whenever a similar problem arises again.

And almost certainly, you haven’t named them and put them in a

catalog to refer to for inspiration and discussions about design.

Design Patterns in KDE – p.5/22

A Case Study: KDE’s DOM
Implementation

Design Patterns in KDE – p.6/22

Case Study: DOM: Factory Method

DOM::Document implements the Factory Method
pattern:

class Document : public Node {

// ...

// All of these are Factory Methods:

Element createElement(...);

Attr createAttribute(...);

Event createEvent(...);

// ...

};

Factory Methods abstract away the creation of objects.
This is essential if you want to hide the implementation
and only want to export the interface.

Design Patterns in KDE – p.7/22

Case Study: DOM: Bridge

Almost all DOM classes implement the Bridge pattern
(a.k.a. Handle):

Node (the Abstractor) contains a member of type
NodeImpl (the Implementor)

Element (the Refined Abstractor) inherits Node

This pattern is not a d-pointer:

d-pointer involves a dumb Data Object with no
behavior.

Implementor is stand-alone (contains all data and
behavior).

Design Patterns in KDE – p.8/22

Case Study: DOM: Composite

The Node-derived DOM classes implement the
Composite pattern:
For a basic interface (Node), there are two classes of
implementations:

Leaves (Text, Comment) that contain no further
children.

Composites (Element, Attr) that may have one
or more children.

The important aspect of this pattern is that container
classes here implement the interface of the objects they
contain.

Design Patterns in KDE – p.9/22

DOM: Chain of Responsibility

Event, together with
NodeImpl::dispatchEvent() implements a
variant of the Chain of Responsibility pattern:

Handler (Node) objects hold references to other
Handlers, thus forming an object chain.

A handleRequest() method on Handler either
handles the request or passes it on to the next
Handler in the chain.

Typically, Handler will be an interface so that the class
of each Handler in the chain can be different.
This is not the Chain of Responsibility as the book says,
but similar enough.

Design Patterns in KDE – p.10/22

Case Study: DOM: Observer

The EventListener class implements the Observer
pattern:

A Subject (Node) registers Observers
(EventListener)

On state change, Subject calls Observer’s single
method, in this case handleEvent(Event&)

You’ll find few Observers in KDE, since Qt’s signal/slot
mechanism reduces the need for this pattern.
Subjects know their type, so Observers can also be
Visitors.

Design Patterns in KDE – p.11/22

Other Examples of Design Pattern
Use in KDE/Qt

Design Patterns in KDE – p.12/22

Design Patterns Use: Factories

Both Abstract Factory and Factory Method are
implemented in QTextCodec:

class QTextCodec {

// ...

static QTextCodec *

codecForName(const char * name, ...);

// ...

virtual QTextDecoder * makeDecoder() const;

virtual QTextEncoder * makeEncoder() const;

// ...
};

Design Patterns in KDE – p.13/22

KDE/Qt Design Pattern Use: Builder

KSieve::Parser implements the Builder pattern:
Instead of constructing an explicit parse tree, it calls
methods in the KSieve::ScriptBuilder interface:

class ScriptBuilder {

// ...

virtual void commandStart(const QString & identifier) = 0;

virtual void commandEnd() = 0;

virtual void taggedArgument(const QString & tag) = 0;

virtual void stringArgument(const QString & str, ...) = 0;

virtual void numberArgument(unsigned long number) = 0;

// ...

};

Design Patterns in KDE – p.14/22

Design Pattern Use: Builder II

Implementations of this interface can reuse the parser to
do totally different things, such as pretty-printing the
script, creating a DOM-like object tree, test the
parser. . .

class PrettyPrintingScriptBuilder {

// ...

void commandStart(const QString & id) {

mStream << QString().fill(’ ’, mIndent) << id;

}

void commandEnd() { mStream << endl; }

void numberArgument(unsigned long num) { mStream << num; }

// ...

private:

QTextStream mStream;

int mIndent;

}; Design Patterns in KDE – p.15/22

Design Pattern Use: Decorator

QFrame implements the Decorator pattern:

QFrame: Is a QWidget, decorates one with a
border.

QScrollView: Is a QWidget, decorates one with
scrollbar(s).

The pattern here is:

Basic interface (QWidget)

Concrete implementations (QPushButton, etc)

Decorator implementations that contain a member of
basic type, which they decorate with additional state
or functionality.

Design Patterns in KDE – p.16/22

Design Pattern Use: Strategy

There are two examples of Strategy implementations in
KMail:

AttachmentStrategy Encapsulates an algorithm to
decide which attachments to display.

HeaderStrategy Encapsulates an algorithm to decide
which header fields to display.

The pattern here is:

Base interface (AttachmentStrategy)

Concrete implementations
({Iconic,Smart,...}AttachmentStrategy).

Context class that refers to a member of the abstract
type to perform tasks.

Design Patterns in KDE – p.17/22

Design Pattern Use: Strategy II

class AttachmentStrategy {

virtual bool inlineNestedMessages() const = 0;

};

class IconicAttachmentStrategy : public AttachmentStrategy {

bool inlineNestedMessages() const { return false; }

};

class SmartAttachmentStrategy : public AttachmentStrategy {

bool inlineNestedMessages() const { return true; }

};

class ObjectTreeParser {

bool processMessageRfc822Subtype(...) {

// ...

if (mAttachmentStrategy->inlineNestedMessages()) {

// expand the message

} else {

// make an icon instead

}

};

};

Design Patterns in KDE – p.18/22

The Rest

Design Patterns in KDE – p.19/22

Patterns not yet used in KDE

I promised to explain the Null Object pattern.
You all know code that looks like this:

if (mFoo)
mFoo->doSomething();

else
doSomethingWithoutFoo();

If your implementation is cluttered with this type of
code, and mFoo is State or Strategy-like, you can
refactor to make the code use the Null Object pattern:

Design Patterns in KDE – p.20/22

Refactoring: Introduce Null Object

if (mFoo)
mFoo->doSomething();

else
doSomethingWithoutFoo();

1. Implement mFoo’s interface in a NullFoo class,
where each method’s implementation consists of the
else leg of conditionals like the above.

2. Instead of setting mFoo to null to indicate it’s
absence, put a reference to a NullFoo instance
there.

3. Remove the conditionals.

Design Patterns in KDE – p.21/22

How to get there?

You’ve just seen one application of a technique called
Refactoring

This is supposed to be a slide on refactoring,
but that is for another talk, at another

conference. ;-)

(or get your hands on the Book(s))

Design Patterns in KDE – p.22/22

	Overview
	What Design Patterns are
	What Design Patterns are not
	Why would I want to use one?
	A Case Study: KDE's DOM Implementation
	Case Study: DOM: Factory Method
	Case Study: DOM: Bridge
	Case Study: DOM: Composite
	DOM: Chain of Responsibility
	Case Study: DOM: Observer
	Other Examples of Design Pattern Use in KDE/Qt
	Design Patterns Use: Factories
	KDE/Qt Design Pattern Use: Builder
	Design Pattern Use: Builder II
	Design Pattern Use: Decorator
	Design Pattern Use: Strategy
	Design Pattern Use: Strategy II
	The Rest
	Patterns not yet used in KDE
	Refactoring: Introduce Null Object
	How to get there?

